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Persistent Time Series: An Application to Music Classification  
 

ABSTRACT 

Background 

A time-varying system can be interpreted as a series of rel-

evant geometric and topological events. Persistent homology 

has mainly been applied to the study of static point clouds and 

shapes, by providing a description of both the geometry and 

topology of the analysed space. See Frosini and Landi (2001), 

and Edelsbrunner and Harer (2009). When applied to the 

study of static spaces, one of the reasons that makes persistent 

homology so effective is that it provides a representation in 

which the features of the space result arranged by relevance. 

Thus, the analysis can be tuned on a specific application need, 

by balancing the computational cost and the level of details to 

retrieve. In particular, such fingerprint can be visualised as a 

persistent diagram. The feature of a space are represented in a 

persistence diagram as points and lines in the plane, ranked 

according to their distance from the diagonal. The two main 

ingredients in persistent homology are a filtration of the space 

one wants to analyse and a pairing of (homological) critical 

values of the function. A filtration is a sequence of nested 

spaces generally induced by the collection of sublevel sets of 

a continuous function defined on analysed space. The pairing 

is induced by the birth and death of homological classes along 

the filtration. 

 
Fig. 1, Left: The height function on the topological space X, and 

its persistence diagram D0(X, f). Right: A variation of the geome-

try of the shape corresponds to an update of the persistence 

diagram. 

Example 1. Consider the manifold in Figure 1 (left) and the 

height function f defined with respect to the axis depicted in 

the figure. The filtration is given by the sublevel sets of f, and 

the critical points are the maxima and minima of f. The 0-

persistence diagram D0(X, f) describes how the connected 

components of the shape are born and die along the filtration. 

In the figure a first connected component is born at height a1 

and will never die along the filtration: the resulting pairing 

is (a1, ∞). A second connected component is born in a2 and it 

will die when reaching the sublevel set defined by a3 , generat-

ing the pairing (a2,a3). In particular, it is possible to define a k-

persistence diagram for every integer k. See Edelsbrunner and 

Harer (2009) for more details. 

Persistent homology has been generalised to time-varying 

systems, either by considering continuous representa-

tions (Cohen-Steiner 2006), or introducing statistics 

(Munch 2013; Turner et al. 2014). 

A time series is a collection of values obtained through 

subsequent, evenly sampled, observations in time. Time-series 

data mining (Esling and Agon 2012) is an attempt to organise 

data, in furtherance of visualising their contour, avoiding 

negligible details and creating a consistent, interpretable rep-

resentation. Due to their generality and flexibility, time series 

are extensively used in applications, e.g. classification, seg-

mentation (Keogh et al. 2004), and supported by a strong 

theoretical framework (Keogh and Kasetty 2003). 

We suggest to combine the scalability (among other prop-

erties) of persistent homology, and the notion of time series. 

We define a persistence time series as the collection of persis-

tent diagrams obtained by defining a filtration function on a 

time-varying manifold. In particular we refer to observations 

of a persistence time series as persistence snapshots. 

 
Fig. 2. On the left, a finite subcomplex of the planar Tonnetz T. 

On the right the Tonnetz torus. 

Example 2. In Figure 2 (right) the geometrical variation of 

the absolute minimum of X determines an update of the asso-

ciated persistent diagram. 

This time-dependent representation allows to distinguish 

between relevant and noisy states in time by comparing dia-

grams associated with different observations. Persistence 

diagrams are indeed points of a metric space equipped with 

the bottleneck distance (Edelsbrunner and Harer 2009). In 

addition, the computation of the dissimilarity between time 

series (Liao 2005) allows to compare several time-varying 

systems; i.e. to find the timespans, if they exists, where two 

time-varying spaces can be considered comparable, in agree-

ment with their time-dependent, geometric and topological 

characterisation. Music style analysis is a natural framework 

for this kind of formalism. 

Aims and Repertoire Studied 

We present a method to compare time-varying systems by 

taking advantage of their geometric and topological finger-

prints expressed as persistence time series. If two spaces and 

their associated filtering functions are comparable, Dynamic 

Time Warping (DTW) is used to define an optimal warping 



9 t h  E U R O P E A N  M U S I C  A N A L Y S I S  C O N F E R E N C E  —  E U R O M A C  9  

P O S T P R I N T  –  T E M P O R A R Y  V E R S I O N  2 

path between two kth persistence time series. An optimal 

warping path gives an encompassing view on the relative 

geometric behaviour of the analysed systems, by highlighting 

eventual irregular patterns in their geometric evolution.  As an 

application we perform automatic stylistic clustering of three 

collections of classical, jazz and pop music. 

Methods 

We generalise to dynamical scenarios the model presented 

in Bergomi et al. (2016), in which persistent homology is used 

to characterise the stylistic content of musical compositions, 

represented as static 3-dimensional shapes. We take advantage 

of the topological representation of the Tonnetz as a simplicial 

complex (Bigo et al. 2013). We recall that Tonnetz can be 

seen on the one hand as a infinite planar simplicial complex 

we will denote as T, whose triangles represent minor and 

major triads. On the other hand as a torus, denoted as T in the 

reminder. The information concerning the harmonic relation-

ships and the temporal hierarchy (durations) of notes in a 

musical phrase can be expressed by displacing the vertices of 

the Tonnetz. The vertices of T are labelled with pitch classes. 

Given a composition, we deform the planar Tonnetz T by 

displacing the vertices in height of a distance equal to the sum 

of the durations of the pitch class labelling the vertices. (See 

Figure 3.) 

 

Fig. 3. The Tonnetz deformed with a major triad that appears as 

a 2-simplex (triangle) corresponding to a maximum of the height 

function. 

 

Fig. 4. Optimal warping path between two versions of Caravan. 

The positions of the gaps correspond to the solo parts of the 

longer version (frames 25–50 and 51–65 respectively).  

The ordering induced by this displacement allows to define a 

filtration of the simplicial complex induced by the height 

function on the torus T. A 3-dimensional interactive anima-

tion showing how the Tonnetz is deformed by a musical 

phrase in time is available at <http:namilab.com/ 

tonnetz/examples/deformed_tonnetz_int_sound_pers.html>. 

Music is often organised in bars: modulations occur each 

four or eight bars in a jazz context, as well as the melodic line 

of the voice is arranged in a question and answer paradigm 

consisting of cycles of 2 or 4 bars in pop music. The idea is to 

take into account this natural segmentation to create a win-

dowing of the composition. 
By analysing the evolution in time of the persistence dia-

grams it is possible to detect relevant phenomena encoded in 

the progressive geometric update of the deformed Tonnetz. In 

Figure 5, a sequence of six 0th persistence diagrams computed 

considering an 8-bar windowing of Schoenberg’s Klavier-

stück I is depicted. First, consider diagram of the first row of 

the figure: a line reveals the connected nature of T and repre-

sents the absolute minimum of the height function. This min-

imum corresponds to the subcomplex of the Tonnetz that is 

less used in the composition. The point highlights the pres-

ence of a second minimum of the height function associated to 

a subcomplex of T which is disconnected from the first one. 

In musical terms, the presence of these two connected compo-

nents grasps the atonal nature of the piece: Disconnected 

subcomplexes of the Tonnetz are labelled with dissonant 

pitch-class sets (Cohn 1997). The lifespan of the point 

measures the relevance of this stylistic feature. The remainder 

of the observations describes the changes in terms of death 

and birth-levels of these connected components. Moreover, 

the increasing growth of the birth-levels of the points of the 

diagram represents the homogeneous gain of height of the 

entire simplicial complex in time. This fact means that the 

entire chromatic scale is uniformly used in the composition, 

both in terms of pitches and duration of the notes. 

 

Fig. 5. The six first observation of the 0-persistence time series. 

Klavierstück I – Schoenberg. Persistence snapshots are taken 

each 8 bars. 

In order to compare two compositions we measure the op-

timal alignment between the associated persistence time se-

ries, by using DTW. Dealing with persistence diagram, a 

reasonable choice as cost function is the bottleneck distance. 

In musical terms, an optimal warping path returns the compa-

rable regions of the two compositions, represented by simi-

lar (near with respect to the bottleneck distance) persistence 

diagrams. In other words, time regions of the compositions 

that share a similar use of the entire set of pitch classes (point 

at infinity), or dissonant intervals both in terms of rele-

vance (distance from the diagonal of the proper points), and in 

a balanced or unbalanced way (relative distance and multiplic-
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ity of the points), are aligned in an optimal warping path. We 

use DTW to compute the dissimilarity between 0th persis-

tence time series associated with three datasets composed by 

classical, pop and jazz compositions, respectively. 
Here we briefly discuss the analysis of two versions of 

Caravan. The presence of rich solos in a long version of the 

standard distinguishes it neatly by the second, shorter version 

in which only the theme is presented with small variations. 

Note how an optimal warping path between these two pieces 

depicted in Figure 4 tries to align them on the themes, skip-

ping the solo parts. Hence, the evolution in time of the persis-

tence diagrams grasps the difference between an organised 

thematic flow, and a freer improvisational context. 
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