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RÉSUMÉ

Nous introduisons la notion de multi-motif, une abs-
traction combinatoire des phrases musicales à plusieurs
voix. L’intérêt de cette approche réside dans le fait qu’il
devient possible de composer deux multi-motifs pour en
produire un plus long. Ceci s’inscrit dans un contexte
algébrique puisque l’ensemble des multi-motifs possède
une structure dite d’opérade ; les opérades étant des struc-
tures offrant une formalisation de la notion d’opérateur et
de leurs compositions. Cette vision des phrases musicales
comme des opérateurs permet de réaliser ainsi des calculs
sur ces dernières et admet des applications en musique
générative : étant donné un ensemble de courts motifs,
nous proposons divers algorithmes pour produire de ma-
nière aléatoire une nouvelle phrase plus longue inspirée
des motifs initiaux.

—

We introduce the notion of multi-pattern, a combina-
torial abstraction of polyphonic musical phrases. The in-
terest of this approach lies in the fact that this offers a
way to compose two multi-patterns in order to produce a
longer one. This dives musical phrases into an algebraic
context since the set of multi-patterns has the structure
of an operad ; operads being structures offering a forma-
lization of the notion of operators and their compositions.
Seeing musical phrases as operators allows us to perform
computations on phrases and admits applications in ge-
nerative music : given a set of short patterns, we propose
various algorithms to randomly generate a new and longer
phrase inspired by the inputted patterns.

1. INTRODUCTION

Generative music is a subfield of computational musi-
cology in which the focus lies on the automatic creation of
musical material. This creation is based on algorithms ac-
cepting inputs to influence the result obtained, and having
a randomized behavior in the sense that two executions
of the algorithm with the same inputs produce different
results. Several very different approaches exist. For ins-
tance, some of them use Markov chains, others genetic
algorithms [10], still others neural networks [2], or even
formal grammars [7,8]. The way in which such algorithms
represent and manipulate musical data is crucial. Indeed,
the data structures used to represent musical phrases orient

the nature of the operations we can define of them. Consi-
dering operations producing new phrases from old ones is
important to specify algorithms to randomly generate mu-
sic. A possible way for this purpose consists to give as in-
put some musical phrases and the algorithm creates a new
one by blending them through operations. Therefore, the
willingness to endow the infinite set of all musical phrases
with operations in order to obtain suitable algebraic struc-
tures is a promising approach. Such interactions between
music and algebra is a fruitful field of investigation [1, 9].

In this work, we propose to use tools coming from
combinatorics and algebraic combinatorics to represent
musical phrases and operations on them, in order to in-
troduce generative music algorithms close to the family of
those based on formal grammars. More precisely, we in-
troduce the music box model, a very simple model to re-
present polyphonic phrases, called multi-patterns. The in-
finite set of all these objects admits the structure of an ope-
rad. Such structures originate from algebraic topology and
are used nowadays also in algebraic combinatorics and in
computer science [4,11]. Roughly speaking, in these alge-
braic structures, the elements are operations with several
inputs and the composition law is the usual composition of
operators. Since the set of multi-patterns forms an operad,
one can regard each pattern as an operation. The fallout
of this is that each pattern is, at the same time, a musical
phrase and an operation acting on musical phrases. In this
way, our music box model and its associated operad pro-
vide an algebraic and combinatorial framework to perform
computations on musical phrases.

All this admits direct applications to design random
generation algorithms since, as introduced by the author
in [5], given an operad there exist algorithms to generate
some of its elements. These algorithms are based upon
bud generating systems, which are general formal gram-
mars based on colored operads [12]. In the present work,
we propose three different variations of these algorithms
to produce new musical phrases from old ones. More pre-
cisely, our algorithm works as follows. It takes as input
a finite set of multi-patterns and an integer value to in-
fluence the size of the output. It works iteratively by choo-
sing patterns from the initial collection in order to alter the
current one by performing a composition using the operad
structure. As we shall explain, the initial patterns can be
colored in order to forbid some compositions and avoid in
this way some musical intervals for instance. These gene-
ration algorithms are not intended to write complete musi-
cal pieces ; they are for obtaining, from short old patterns,
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a similar but longer one, presenting possibly new ideas to
the human composer.

This text is organized as follows. Section 2 is devoted
to setting our context and notations about music theory
and to introduce the music box model. In Section 3, we
begin by presenting a brief overview of operad theory and
we build step by step the music box operad. For this, we
introduce first an operad on sequences of scale degrees, an
operad on rhythm patterns, and then an operad on mono-
phonic patterns to end with the operad of multi-patterns.
Three random generation algorithms for multi-patterns are
introduced in Section 4. Finally, Section 5 provides some
concrete applications of the previous algorithms. We fo-
cus here on random variations of a monophonic musical
phrase as input leading to random changes of rhythm, har-
monizations, and arpeggiations.

In this version of this work, most of the proofs of the
announced results are omitted due to lack of space. A
computer implementation of all the presented algorithms
is, as well as its source code and concrete examples, avai-
lable at [6].

In the remainder of this article, we will use the fol-
lowing notations and conventions. For any integer n, [n]
denotes the set {1, . . . , n}. If a is a letter and n is a nonne-
gative integer, an is the word consisting in n occurrences
of a. In particular, a0 is the empty word ε.

2. THE MUSIC BOX MODEL

The purpose of this section is to set some definitions
and some conventions about music theory, and introduce
multi-patterns that are abstractions of musical phrases.

2.1. Notes and scales

We fit into the context of an η tone equal temperament,
also written as η-TET, where η is any nonnegative inte-
ger. An η-note is a pair (k, n) where 0 6 k 6 η − 1
and n ∈ Z. We shall write kn instead of (k, n). The in-
teger n is the octave index and k is the step index of kn.
The set of all η-notes is denoted by N (η). Despite this le-
vel of generality, and even if all the concepts developed
in the sequel work for any η, in most applications and
examples we shall consider that η = 12. Therefore, un-
der this convention, we simply call note any 12-note and
write N for N (12). We set in this context of 12-TET the
“middleC” as the note 04, which is the first step of the oc-
tave of index 4. An η-scale is an integer composition λ of
η, that is a sequence (λ1, . . . ,λ`) of nonnegative integers
satisfying λ1 + · · ·+λ` = η. The length of λ is the num-
ber `(λ) := ` of its elements. We simply call scale any
12-scale. For instance, (2, 2, 1, 2, 2, 2, 1) is the major na-
tural scale, (2, 1, 2, 2, 1, 3, 1) is the harmonic minor scale,
and (2, 1, 4, 1, 4) is the Hirajoshi scale. This encoding of
a scale by an integer composition is also known under the
terminology of interval pattern.

A rooted scale is a pair (λ, r) where λ is a scale and r
is a note. This rooted scale describes a subsetN(λ,r) ofN
consisting in the notes reachable from r by following the

steps prescribed by the values λ1, λ2, . . ., λ`(λ) of λ. For
instance, if λ is the Hirajoshi scale, then

N(λ,04) = {. . . , 73, 83,04, 24, 34, 74, 84, 05, . . . } (1)

If λ is the major natural scale, then

N(λ,24) = {. . . , 14,24, 44, 64, 74, 94, 114, 15, 25, . . . }
(2)

2.2. Patterns

We now introduce degree patterns, rhythm patterns,
patterns, and finally multi-patterns.

A degree d is any element of Z. Negative degrees are
denoted by putting a bar above their absolute value. For
instance,−3 is denoted by 3̄. A degree pattern d is a finite
word d1 . . .d` of degrees. The arity of d, also denoted by
|d|, is the number ` of its elements.

Given a rooted scale (λ, r), a degree pattern d specifies
a sequence of notes by assigning to the degree 0 the note
r, to the degree 1 the following higher note inN(λ,r) next
to r, to the degree 1̄ the lower note inN(λ,r) next to r, and
so on. For instance, the degree pattern 102̄3̄507 specifies,
in the context of the rooted scale (λ, 04) where λ is the
major natural scale, the sequence of notes

24, 04, 93, 73, 94, 04, 05 (3)

A rhythm pattern r is a finite word r1 . . . r` on the
alphabet {�,�}. The symbol � is a rest and the sym-
bol � is a beat. The length of r is ` and the arity |r|
of r is its number of occurrences of beats. The duration
sequence of a rhythm pattern r is the unique sequence(
α0, α1, . . . , α|r|

)
of nonnegative integers such that

r = �α0 � �α1 · · · � �α|r| (4)

The rhythm pattern r specifies a rhythm wherein each beat
has a relative duration : the rhythm begins with a silence of
α0 units of time, followed by a first beat sustained 1 + α1

units of time, and so on, and finishing by a last beat sustai-
ned 1 + α|r| units of time. We adopt here the convention
that each rest and beat last each the same amount of time
of one eighth of the duration of a whole note. Therefore,
given a tempo specifying how many there are rests and
beats by minute, any rhythm pattern encodes a rhythm.

For instance, let us consider the rhythm pattern

r := ������������ (5)

The duration sequence of r is (1, 0, 1, 3, 0, 1, 0) so that r
specifies the rhythm consisting in an eighth rest, an eighth
note, a quarter note, a half note, an eighth note, a quarter
note, and finally an eighth note.

A pattern is a pair p := (d, r) such that |d| = |r|. The
arity |p| of p is the arity of both d and r, and the length
`(p) of d is the length `(r) of r.

In order to handle concise notations, we shall write any
pattern (d, r) as a word p on the alphabet {�} ∪Z where
the subword of p obtained by removing all occurrences
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of � is the degree pattern d, and the word obtained by
replacing in p each integer by � is the rhythm pattern r.
For instance,

1��2̄�12 (6)

is the concise notation for the pattern

(12̄12,�������) (7)

For this reason, thereafter, we shall see and treat any pat-
tern p as a finite word p1 . . .p` on the alphabet {�} ∪ Z.
Remark that the length of p is ` and that its arity is the
number of letters of Z it has.

Given a rooted scale (λ, r) and a tempo, a pattern p :=
(d, r) specifies a musical phrase, that is a sequence of
notes arranged into a rhythm. The notes of the musical
phrase are the ones specified by the degree pattern d and
their relative durations are specified by the rhythm pat-
tern r. For instance, consider the pattern

d := 0�121̄�012̄�1̄0̄0��� (8)

By choosing the rooted scale (λ, 93) where λ is the har-
monic minor scale, and by setting 128 as tempo, one ob-
tains the musical phrase

= 128

8
8

For any positive integer m, an m-multi-pattern is an
m-tuple m :=

(
m(1), . . . ,m(m)

)
of patterns such that all

m(i) have the same arity and the same length. The arity
|m| of m is the common arity of all the m(i), and the
length `(m) of m is the common length of all the m(i).
An m-multi-pattern m is denoted through a matrix of di-
mensionm×`(m), where the i-th row contains the pattern
m(i) for any i ∈ [m]. For instance,

m :=

[
0 � 1� 1
� 2̄ 3̄� 0

]
(9)

is a 2-multi-pattern having arity 3 and length 5. The fact
that all patterns of an m-multi-pattern must have the same
length ensures that they last the same amount of units of
time. This is important since anm-multi-pattern is used to
handle musical sequences consisting in m stacked voices.
The condition about the arities of the patterns, and hence,
about the number of degrees appearing in these, is a par-
ticularity of our model and comes from algebraic reasons.
This will be clarified later in this article.

Given a rooted scale (λ, r) and a tempo, an m-multi-
pattern m specifies a musical phrase obtained by conside-
ring the musical phrases specified by each m(i), i ∈ [m],
each forming a voice. For instance, consider the 2-multi-
pattern

m :=

[
0 4� 4 0 0
7̄ 7̄ 0 � 3̄ 3̄

]
(10)

By choosing the rooted scale (λ, 93) where λ is the minor
natural scale and by setting 128 as tempo, one obtains the
musical phrase

= 128

8
8

8
8

Due to the fact thatm-multi-patterns evoke paper tapes
of a programmable music box, we call music box model
the model just described to represent musical phrases by
m-multi-patterns within the context of a rooted scale and
a tempo.

3. OPERAD STRUCTURES

The purpose of this section is to introduce an operad
structure on multi-patterns, called music box operad. The
main interest of endowing the set of multi-patterns with
the structure of an operad is that this leads to an algebraic
framework to perform computations on patterns.

3.1. A primer on operads

We set here the elementary notions of operad theory
used in the sequel. Most of them come from [4].

A graded set is a setO decomposing as a disjoint union

O :=
⊔
n∈N
O(n) (11)

where the O(n), n ∈ N, are sets. For any x ∈ O, there is
by definition a unique n ∈ N such that x ∈ O(n) called
arity of x and denoted by |x|.

A nonsymmetric operad, or an operad for short, is a
triple (O, ◦i,1) such that O is a graded set, ◦i is a map

◦
i

: O(n)×O(m)→ O(n+m− 1), i ∈ [n] (12)

called partial composition map, and 1 is a distinguished
element of O(1), called unit. This data has to satisfy, for
any x, y, z ∈ O, the three relations(
x ◦

i
y
)
◦

i+j−1
z = x ◦

i

(
y ◦

j
z

)
, i ∈ [|x|], j ∈ [|y|] (13)(

x ◦
i
y
)
◦

j+|y|−1
z =

(
x ◦

j
z

)
◦
i
y, 1 6 i < j 6 |x| (14)

1 ◦
1
x = x = x ◦

i
1, i ∈ [|x|] (15)

Intuitively, an operad is an algebraic structure wherein
each element can be seen as an operator having |x| inputs
and one output. Such an operator is depicted as

x

1 |x|. . .

(16)

where the inputs are at the bottom and the output at the
top. Given two operations x and y of O, the partial com-
position x ◦i y is a new operator obtained by composing y
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into x onto its i-th input. Pictorially, this partial composi-
tion expresses as

x

1 |x|i. . . . . .

◦
i

y

1 |y|. . .

=

x

1 |x|+ |y| − 1. . . . . .y

i i+ |y| − 1. . .

(17)
Relations (13), (14), and (15) become clear when they are
interpreted into this context of abstract operators and roo-
ted trees.

Let (O, ◦i,1) be an operad. The full composition map
of O is the map

◦ : O(n)×O(m1)×· · ·×O(mn)→ O(m1 + · · ·+mn)

(18)
defined, for any x ∈ O(n) and y1, . . . , yn ∈ O by

x ◦ [y1, . . . , yn] :=

(
. . .

((
x ◦

n
yn

)
◦

n−1
yn−1

)
. . .

)
◦
1
y1

(19)
Intuitively, x ◦ [y1, . . . , yn] is obtained by simultaneously
grafting the outputs of the yi onto the i-th inputs of x.

Let (O′, ◦i′,1′) be a second operad. A map φ : O →
O′ is an operad morphism if for any x ∈ O(n), φ(x) ∈
O′(n), φ(1) = 1′, and for any x, y ∈ O and i ∈ [|x|],

φ(x ◦
i
y) = φ(x) ◦

i

′φ(y) (20)

If instead (20) holds by replacing the second occur-
rence of i by |x|+1−i, then φ is an operad antimorphism.
We say that O′ is a suboperad of O if for any n ∈ N,
O′(n) is a subset of O(n), 1 = 1′, and for any x, y ∈ O′
and i ∈ [|x|], x ◦i y = x ◦i ′y. For any subset G of O, the
operad generated by G is the smallest suboperad OG of
O containing G. When OG = O and G is minimal with
respect to the inclusion among the subsets of G satisfying
this property, G is a minimal generating set of O and its
elements are generators of O.

The Hadamard product ofO andO′ is the operadO�
O′ defined, for any n ∈ N, by (O �O′) (n) := O(n) ×
O′(n), endowed with the partial composition map ◦i′′ de-
fined, for any (x, x′) , (y, y′) ∈ O�O′ and i ∈ [|(x, x′)|],
by

(x, x′) ◦
i

′′ (y, y′) :=
(
x ◦

i
y, x′ ◦

i

′y′
)

(21)

and having (1,1′) as unit.

3.2. The music box operad

We build an operad on multi-patterns step by step by
introducing an operad on degree patterns and an operad on
rhythm patterns. The operad of patterns is constructed as
the Hadamard product of the two previous ones. Finally,
the operad of multi-patterns if a suboperad of an iterated
Hadamard product of the operad of patterns with itself.

Let DP be the graded collection of all degree patterns,
wherein for any n ∈ N, DP(n) is the set of all degree

patterns of arity n. Let us define on DP the partial com-
position ◦i wherein, for any degree patterns d and d′, and
any integer i ∈ [|d|],

d ◦
i
d′ :=d1 . . .di−1 (di + d′1) . . .

. . .
(
di + d′|d′|

)
di+1 . . .d|d|

(22)

For instance,

01234 ◦
2

1̄10 = 0021234 (23)

We denote by ε the empty degree pattern. This element is
the only one of DP(0).

Proposition 3.2.1. The triple (DP, ◦i, 0) is an operad.

Démonstration. This is the consequence of the fact that
(DP, ◦i, 0) is the image of the monoid (Z,+, 0) by the
construction T defined in [3]. Since this construction asso-
ciates an operad with any monoid, the result follows.

We call DP the degree pattern operad.

Proposition 3.2.2. The operad DP admits {ε, 1̄, 1, 00}
and {ε, 1̄1} as minimal generating sets.

Let RP be the graded collection of all rhythm patterns,
wherein for any n ∈ N, RP(n) is the set of all rhythm
patterns of arity n. Let us define on RP the partial com-
position ◦i wherein, for any rhythm patterns r and r′, and
any integer i ∈ [|r|], r ◦i r′ is obtained by replacing the
i-th occurrence of � in r by r′. For instance,

������� ◦
3
���� = ��� ���� ��� (24)

We denote by ε the empty rhythm pattern. This element is
not the only one of RP(0) since RP(0) = {�α : α ∈ N}.

Proposition 3.2.3. The triple (RP, ◦i,�) is an operad

We call RP the rhythm pattern operad.

Proposition 3.2.4. The operad RP admits {ε,�,��} as
minimal generating set.

Let P be the operad defined as

P := DP� RP (25)

Since a pattern is a pair (d, r) where d is a degree pattern
and r is a rhythm pattern of the same arity, for any n ∈ N,
P(n) is in fact the set of all patterns of arity n. For this
reason, P is the graded set of all patterns. We call P the
pattern operad. For instance, by using the concise notation
for patterns,

�2̄1�1 ◦
2

0�1̄ = �2̄ 1�0 �1 (26)

We denote by ε the empty pattern.

Proposition 3.2.5. The operad P admits {ε,�, 1̄, 1, 00}
and {ε,�, 1̄1} as minimal generating sets.
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As a consequence of proposition 3.2.5, any pattern p
expresses as a tree on the internal nodes in {ε,�, 1̄, 1, 00}
or in {ε,�, 1̄1}. For instance, the pattern p := 1̄��1�3
expresses as the trees

��

�

1̄

00

1

1

1

00

00

00

1

00

or �

ε

ε

ε

� �

1̄1

1̄1

1̄1

1̄1

1̄1

1̄1

1̄1

1̄1 (27)

respectively for the two previous generating sets.
For any positive integer m, let P′m be operad defined

through the iterated Hadamard product

P′m := P� · · ·� P︸ ︷︷ ︸
m terms

(28)

Let also Pm be the subset of P′m restrained on the m-
tuples

(
m(1), . . . ,m(m)

)
such that

`
(
m(1)

)
= · · · = `

(
m(m)

)
. (29)

Theorem 3.2.6. For any positive integerm, Pm is an ope-
rad.

Since an m-multi-pattern
(
m(1), . . . ,m(m)

)
is an m-

tuple where all m(i) have the same arity and the same
length, for any m ∈ N, Pm is the graded set of all m-
multi-patterns. By Theorem 3.2.6, Pm is an operad, called
m-music box operad.

By using the matrix notation for m-multi-patterns, we
have for instance respectively in P2 and in P3,[
� 2̄ 1̄ � 0
0 1�� 1

]
◦
2

[
1� 0 0
3̄� 0 4

]
=

[
� 2̄ 0 � 0̄ 0̄ � 0
0 2̄� 1 5�� 1

]
(30)

This definition of the m-music box operad Pm explains
why all the patterns of an m-multi-pattern must have the
same arity. This is a consequence of the general definition
of the Hadamard product of operads.

For any sequence (α1, . . . , αm) of integers of Z and
β ∈ N, let

φ(α1,...,αm),β : Pm → Pm (31)

be the map such that, for any m :=
(
m(1), . . . ,m(m)

)
∈

Pm, φ(α1,...,αm),β (m) is the m-multi-pattern obtained by
multiplying each degree of m(j) by αj and by replacing
each occurrence of � in m by β occurrences of �. For
instance,

φ(2,0,−1),2

([
1 �� 2
� 1 � 3
3 1 ��

])
=

[
2 ���� 4
�� 0 �� 0
3̄ 1̄ ����

]
(32)

Proposition 3.2.7. For any positive integer m, any se-
quence (α1, . . . , αm) of integers, and any nonnegative in-
teger β, the map φ(α1,...,αm),β is an operad endomorphism
of Pm.

Let also the map mir : Pm → Pm be the map such that,
for any m ∈ Pm, mir(m) is the m-multi-pattern obtained
by reading the m from right to left. For instance,

mir

([
1 �� 2
� 1 � 3
3 1 ��

])
=

[
2 �� 1
3 � 1 �
�� 1 3

]
(33)

Proposition 3.2.8. For any positive integer m, the map
mir sending any m-multi-pattern to its mirror is an ope-
rad anti-automorphism of Pm.

Due to the m-music box operad and more precisely, to
the operad structure on m-multi-patterns, we can see any
m-multi-pattern as an operator. Therefore, we can build
m-multi-patterns and then musical sequences by conside-
ring some compositions of small building blocksm-multi-
patterns. For instance, by considering the small 2-multi-
patterns

m1 :=
[

0 �
� 0

]
, m2 :=

[
1 0 1
7̄ 0 0

]
, m3 :=

[
1 2� 3
1̄ 0� 1

]
(34)

one can build a new 2-multi-pattern by composing them
as specified by the tree

m2

m1

m2

m3 (35)

This produces the new 2-multi-pattern[
1 1 0 1� 2 3� 3
7̄� 7̄ 0 0 1̄ 0� 1

]
(36)

Besides, by proposition 3.2.7, the image of (36) through
the map, for instance, φ(−1,2),3 is the same as the 2-multi-
pattern obtained from (35) by replacing each 2-multi-patt-
ern appearing in it by its image by φ(−1,2),3.

4. GENERATION AND RANDOM GENERATION

We exploit now the music box operad to design three
random generation algorithms devoted to generate new
musical phrases from a finite set of multi-patterns. This
relies on colored operads and bud generating systems, a
sort of formal grammars introduced in [5].

4.1. Colored operads and bud operads

We provide here the elementary notions about colored
operads [12]. We also explain how to build colored ope-
rads from operads.

A set of colors is any nonempty finite set C :=
{b1, . . . , bk} wherein elements are called colors. A C-
colored set is a set C decomposing as a disjoint union

C :=
⊔
a∈C
u∈C∗

C(a, u) (37)
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where C∗ is the set of all finite sequences of elements of
C, and the C(a, u) are sets. For any x ∈ C, there is by
definition a unique pair (a, u) ∈ C × C∗ such that x ∈
C(a, u). The arity |x| of x is the length |u| of u as a word,
the output color out(x) of x is a, and for any i ∈ [|x|],
the i-th input color ini(x) of x is the i-th letter ui of u.
We also denote, for any n ∈ N, by C(n) the set of all
elements of C of arity n. Therefore, a colored graded set
is in particular a graded set.

A C-colored operad is a triple (C, ◦i,1) such that C is
a C-colored set, ◦i is a map

◦
i

: C(a, u)× C (ui, v)→ C
(
a, u ◦

i
v
)
i ∈ [|u|] (38)

called partial composition map, where u ◦i v is the word
on C obtained by replacing the i-th letter of u by v, and 1
is a map

1 : C→ C(a, a) (39)

called colored unit map. This data has to satisfy rela-
tions (13) and (14) when their left and right members are
both well-defined, and, for any x ∈ C, the relation

1(out(x)) ◦
1
x = x = x ◦

i
1 (ini(x)) , i ∈ [|x|] (40)

Intuitively, an element x of a colored operad having
a as output color and ui as i-th input color for any i ∈
[|x|] can be seen as an abstract operator wherein colors
are assigned to its output and to each of its inputs. Such
an operator is depicted as

x

1 |x|

a

u1 u|x|

. . .

(41)

where the colors of the output and inputs are put on the
corresponding edges. The partial composition of two ele-
ments x and y in a colored operad expresses pictorially as

x

1 |x|i

a

u1 u|x|ui

. . . . . .

◦
i

y

1 |y|

ui

v1 v|y|

. . .

=

x

1 |x|+|y|−1. . . . . .

a

u1 u|x|

y

i i+|y|−1

v1 v|y|

. . .

ui

(42)
Besides, most of the definitions about operads recalled

in section 3.1 generalize straightforwardly to colored ope-
rads. In particular, one can consider the full composition
map of a colored operad defined by (19) when its right
member is well-defined.

Let us introduce another operation, specific to colored
operads. Let (C, ◦i,1) be a colored operad. The colored
composition map of C is the map

� : C(a, u)× C(b, v)→ C, a, b ∈ C, u, v ∈ C∗, (43)

defined, for any x ∈ C(a, u) and y ∈ C(b, v), by using the
full composition map, by

x� y := x ◦
[
y(1), . . . , y(|x|)

]
(44)

where for any i ∈ [|x|],

y(i) :=

{
y if ini(x) = out(y)

1 (ini(x)) otherwise
(45)

Intuitively, x � y is obtained by grafting simultaneously
the outputs of copies of y into all the inputs of x having
the same color as the output color of y.

Let us describe a general construction building a colo-
red operad from a noncolored one introduced in [5]. Given
a noncolored operad (O, ◦i,1) and a set of colors C, the
C-bud operad of O is the C-colored operad BC(O) defi-
ned in the following way. First, BC(O) is the C-colored
set defined, for any a ∈ C and u ∈ C∗, by

BC(O)(a, u) := {(a, x, u) : x ∈ O(|u|)} (46)

Second, the partial composition maps ◦i of BC(O) are de-
fined, for any (a, x, u), (ui, y, v) ∈ BC(O) and i ∈ [|u|],
by

(a, x, u) ◦
i

(ui, y, v) :=
(
a, x ◦

i
y, u ◦

i
v
)

(47)

where the first occurrence of ◦i in the right member of (47)
is the partial composition map ofO and the second one is a
substitution of words : u◦iv is the word obtained by repla-
cing in u the i-th letter of u by v. Finally, the colored unit
map 1 of BC(O) is defined by 1(a) := (a,1, a) for any
a ∈ C, where 1 is the unit ofO. The pruning pr((a, x, u))
of an element (a, x, u) of BC(O) is the element x of O.

Intuitively, this construction consists in forming a co-
lored operad BC(O) out of O by surrounding its elements
with an output color and input colors coming from C in all
possible ways.

We apply this construction to the m-music box operad
by setting, for any set C of colors,

BPC
m := BC (Pm) (48)

We call BPC
m the C-bud m-music box operad. The ele-

ments of BPC
m are called C-colored m-multi-patterns. For

instance, for C := {b1, b2, b3},(
b1,

[
1� 0� 1
7̄� 0 0 �

]
, b2b2b1

)
(49)

is a C-colored 2-multi-pattern. Moreover, in the colored
operad BPC

2 , one has(
b3,

[
0 1 �
1̄� 0

]
, b2b1

)
◦
2

(
b1,

[
1 1 2
2 1̄ 2̄

]
, b3b3b2

)
=

(
b3,

[
0 2 2 3�
1̄� 2 1̄ 2̄

]
, b2b3b3b2

) (50)

The intuition that justifies the introduction of these co-
lored versions of patterns and of the m-music box operad
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is that colors restrict the right to perform the composition
of two given patterns. In this way, one can for instance
forbid some intervals in the musical phrases specified by
the patterns of a suboperad of BPC

m generated by a given
set of C-colored m-multi-patterns. Moreover, given a set
G of C-colored m-multi-patterns, the elements of the su-
boperad BPC

m
G of BPC

m generated by G are obtained by
composing elements of G. Therefore, in some sense, these
elements inherit from properties of the patterns G.

The next section uses these ideas to propose random
generation algorithms outputting new patterns from exis-
ting ones in a controlled way.

4.2. Bud generating systems and random generation

We describe here a sort of generating systems using
operads introduced in [5]. Slight variations are considered
in this present work. We also design three random genera-
tion algorithms to produce musical phrases.

A bud generating system [5] is a tuple (O,C,R, b)
where
1. (O, ◦i,1) is a noncolored operad, called ground ope-

rad ;
2. C is a finite set of colors ;
3. R is a finite subset of BC(O), called set of rules ;
4. b is a color of C, called initial color.
For any color a ∈ C, we shall denote by Ra the set of all
rules ofR having a as output color.

Bud generating systems are devices similar to context-
free formal grammars [8] wherein colors play the role
of nonterminal symbols. These last devices are designed
to generate sets of words. Bud generating systems are
designed to generate more general combinatorial objects
(here, m-multi-patterns). More precisely, a bud genera-
ting system (O,C,R, b) allows us to build elements of
O by following three different operating modes. We des-
cribe in the next sections the three corresponding random
generation algorithms. These algorithms are in particular
intended to work with Pm as ground operad in order to
generate m-multi-patterns.

Hereafter, we shall provide some examples based upon
the bud generating system

B := (P2, {b1, b2, b3} , {c1, c2, c3, c4, c5} , b1) (51)

where

c1 :=

(
b1,

[
0 2 � 1� 0 4
5̄�� 0 0 0 0

]
, b3b2b1b1b3

)
(52)

c2 :=
(
b1,
[
1� 0
0� 1

]
, b1b1

)
, c3 :=

(
b2,

[
1̄
1̄

]
, b1

)
(53)

c4 :=
(
b2,
[
0 0
0 0

]
, b1b1

)
, c5 :=

(
b3,
[
0
0

]
, b3

)
(54)

Moreover, to interpret the generated multi-patterns, we
choose to consider a tempo of 128 and the rooted scale
(λ, 93) where λ is the Hirajoshi scale.

Let B := (O,C,R, b) be a bud generating system. Let
−→ be the binary relation on BC(O) such that

(a, x, u) −→ (a, y, v) (55)

if there is a rule r ∈ R and i ∈ [|u|] such that

(a, y, v) = (a, x, u) ◦
i
r (56)

An element x of O is partially generated by B if there
is an element (b, x, u) such that (b,1, b) is in relation with
(b, x, u) w.r.t. the reflexive and transitive closure of −→.

For instance, by considering the bud generating sys-
tem (51), since(

b1,
[
0
0

]
, b1

)
−→
(
b1,
[
1� 0
0� 1

]
, b1b1

)
−→
(
b1,

[
1� 0 2 � 1� 0 4
0� 4̄�� 1 1 1 1

]
, b1b3b2b1b1b3

)
(57)

−→
(
b1,

[
1� 0 2 2 � 1� 0 4
0� 4̄�� 1 1 1 1 1

]
, b1b3b1b1b1b1b3

)
the 2-multi-pattern[

1� 0 2 2 � 1� 0 4
0� 4̄�� 1 1 1 1 1

]
(58)

is partially generated by B.
The partial random generation algorithm is the algo-

rithm defined as follows :
— Inputs :

1. A bud generating system B := (O,C,R, b) ;
2. An integer k > 0.

— Output : an element of O.
1. Set x as the element (b,1, b) ;
2. Repeat k times :

(a) Pick a position i ∈ [|x|] at random;
(b) IfRini(x) 6= ∅ :

i. Pick a rule r ∈ Rini(x) at random;
ii. Set x := x ◦i r ;

3. Returns pr(x).
This algorithm returns an element partially generated

by B obtained by applying at most k rules to the initial
element (b,1, b). The execution of the algorithm builds a
composition tree of elements ofR with at most k internal
nodes.

For instance, by considering the bud generating sys-
tem (51), this algorithm called with k := 5 builds the tree
of colored 2-multipatterns

c3 c5

c1

c2

c1

(59)

which produces the 2-multi-pattern[
0 1 � 2� 1 3� 2 � 1 5� 0 4
5̄�� 1̄ 0 � 4̄�� 1 1 1 1 0 0

]
(60)

Together with the aforementioned interpretation, the ge-
nerated musical phrase is
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= 128

8
8

8
8

Let −→ be the binary relation on BC(O) such that

(a, x, u) −→ (a, y, v) (61)

if there are rules r1, . . . , r|x| ∈ R such that

(a, y, v) = (a, x, u) ◦
[
r1, . . . , r|x|

]
(62)

An element x of O is fully generated by B if there is
an element (b, x, u) such that (b,1, b) is in relation with
(b, x, u) w.r.t. the reflexive and transitive closure of −→.

For instance, by considering the bud generating sys-
tem (51), since(

b1,
[
0
0

]
, b1

)
−→
(
b1,

[
0 2 � 1� 0 4
5̄�� 0 0 0 0

]
, b3b2b1b1b3

)
−→
(
b1,

[
0 1 � 2� 1 � 0 2 � 1� 0 4 4
5̄�� 1̄ 0 � 1 5̄�� 0 0 0 0 0

]
,

b3b1b1b1b3b2b1b1b3b3

)
(63)

the 2-multi-pattern[
0 1 � 2� 1 � 0 2 � 1� 0 4 4
5̄�� 1̄ 0 � 1 5̄�� 0 0 0 0 0

]
(64)

is fully generated by B.
The full random generation algorithm is the algorithm

defined as follows :
— Inputs :

1. A bud generating system B := (O,C,R, b) ;
2. An integer k > 0.

— Output : an element of O.
1. Set x as the element (b,1, b) ;
2. Repeat k times :

(a) If allRini(x), i ∈ [|x|], are nonempty :
i. Let

(
r1, . . . , r|x|

)
be a tuple of rules such

that each ri is picked at random inRini(x) ;
ii. Set x := x ◦

[
r1, . . . , r|x|

]
;

3. Return pr(x).
This algorithm returns an element synchronously ge-

nerated by B obtained by applying at most k rules to the
initial element (b,1, b). The execution of the algorithm
builds a composition tree of elements of R of height at
most k + 1 wherein the leaves are all at the same distance
from the root.

For instance, by considering the bud generating sys-
tem (51), this algorithm called with k := 2 builds the tree
of colored 2-multipatterns

c2

c5 c3

c1

c2c1 c2 c5

c2

c2

(65)

which produces the 2-multi-pattern[
2 4 � 3� 2 6� 2� 1� 0 1 � 2� 1 � 1� 0 4
5̄�� 0 0 0 0� 1� 2� 4̄�� 0 1 � 2 1� 2 1

]
(66)

Together with the aforementioned interpretation, the ge-
nerated musical phrase is

= 128

8
8

8
8

Let �−→ be the binary relation on BC(O) such that

(a, x, u)
�−→ (a, y, v) (67)

if there is a rule r ∈ R such that

(a, y, v) = (a, x, u)� r (68)

An element x ofO is colorfully generated by B if there
is an element (b, x, u) such that (b,1, b) is in relation with
(b, x, u) w.r.t. the reflexive and transitive closure of �−→.

For instance, by considering the bud generating sys-
tem (51), since

(
b1,
[
0
0

]
, b1

)
�−→
(
b1,

[
0 2 � 1� 0 4
5̄�� 0 0 0 0

]
, b3b2b1b1b3

)
�−→
(
b1,

[
0 2 � 2� 1 � 1� 0 4
5̄�� 0 0 � 1 0� 1 0

]
, b3b2b1b1b1b1b3

)
�−→
(
b1,

[
0 1 � 2� 1 � 1� 0 4
5̄�� 1̄ 0 � 1 0� 1 0

]
, b3b1b1b1b1b1b3

)
(69)

the 2-multi-pattern[
0 1 � 2� 1 � 1� 0 4
5̄�� 1̄ 0 � 1 0� 1 0

]
(70)

is colorfully generated by B.
The colored random generation algorithm is the algo-

rithm defined as follows :
— Inputs :

1. A bud generating system B := (O,C,R, b) ;
2. An integer k > 0.

— Output : an element of O.
1. Set x as the element (b,1, b) ;
2. Repeat k times :

(a) Pick a rule r ∈ R at random;
(b) Set x := x� r ;

3. Returns pr(x).
This algorithm returns an element colorfully generated

by B obtained by applying at most k rules to the initial
element (b,1, b). The execution of the algorithm builds a
composition tree of elements of height at most k + 1.

For instance, by considering the bud generating sys-
tem (51), this algorithm called with k := 3 builds the tree
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of colored 2-multipatterns

c5

c5 c5 c3

c1c3

c5

c5

c1

c5 c3

c1 (71)

which produces the 2-multi-pattern[
0 1 � 1 2� 2 � 1 5� 0 1 � 1� 0 4 4
5̄�� 1̄ 5̄�� 1̄ 0 0 0 5̄�� 1̄ 0 0 0 0

]
(72)

Together with the aforementioned interpretation, the ge-
nerated musical phrase is

= 128

8
8

8
8

5. APPLICATIONS : EXPLORING VARIATIONS
OF PATTERNS

We construct here some particular bud generated sys-
tems devoted to work with the algorithms introduced in
Section 4.2. They generate variations of a single 1-multi-
pattern p given at input, with possibly some auxiliary data.
Each performs a precise musical transformation of p.

5.1. Random temporizations

Given a pattern p and an integer t > 1, we define the
temporizator bud generating system Btemp,t of p and t by

Btemp,t := (P1,C, {c1, c2, c′1, . . . , c′t} , b1) (73)

where C is the set of colors {b1, b2, b3} and c1, c2, c′1, . . .,
c′t are the C-colored 1-multi-patterns

c1 :=
(
b1,p, b

|p|
2

)
, c2 :=

(
b2,p, b

|p|
2

)
(74a)

c′j :=
(
b2,
[
0�j

]
, b3
)
, j ∈ [t]. (74b)

The temporizator bud generating system of p and t gene-
rates a version of the pattern p composed with itself where
the durations of some beats have been increased by at most
t. The colors, and in particular the color b3, prevent mul-
tiple compositions of the colored patterns c′j , j ∈ [t], in
order to not overly increase the duration of some beats.

For instance, by considering the pattern p := 02�1�04
and the parameter t := 2, the partial random generation
algorithm, ran with the bud generating system Btemp,t and
k := 16 as inputs, produces the pattern

02���1�3���2�15�0��4� (75)

Together with the interpretation consisting in a tempo of
128 and the rooted scale (λ, 93) where λ is the Hirajoshi
scale, the generated musical phrase is

= 128

8
8

5.2. Random rhythmic variations

Given a pattern p and a rhythm pattern r, we define the
rhythmic bud generating system Brhyp,r of p and r by

Brhyp,r := (Pm,C, {c1, c2, c3} , b1) (76)

where C is the set of colors {b1, b2, b3} and c1, c2, and c3
are the three C-colored 1-multi-patterns

c1 :=
(
b1,p, b

|p|
2

)
, c2 :=

(
b2,p, b

|p|
2

)
(77a)

c3 :=
(
b2, r

′, b
|r|
3

)
(77b)

where r′ is the pattern
(
0|r|, r

)
. The rhythmic bud genera-

ting system of p and r generates a version of the pattern
p composed with itself where some beats are repeated ac-
cordingly to the rhythm pattern r. The colors, and in par-
ticular the color b3, prevent multiple compositions of the
colored pattern c3. Observe that when r = ε, each compo-
sition involving c3 deletes a beat in the generated pattern.

For instance, by considering the pattern p := 1�011�2
and the rhythm pattern r := �����, the partial random
generation algorithm run with the bud generating system
Brhyp,r and k := 8 as inputs produces the pattern

22��2��122�3�1�011�22�122��2�2�31�22��2� (78)

Together with the interpretation consisting in a tempo of
128 and the rooted scale (λ, 93) where λ is the minor na-
tural scale, the generated musical phrase is

= 128

8
8

5.3. Random harmonizations

For any pattern p and an integer m > 1, we denote by
[p]m the m-multi-pattern

(
[p]

(1)
m , . . . , [p]

(m)
m

)
satisfying

[p]
(i)
m = p for all i ∈ [m].
Given a pattern p and a degree pattern d of arity m >

1, we define the harmonizator bud generating system Bharp,d

of p and d by

Barpp,d := (Pm,C, {c1, c2, c3} , b1) (79)

where C is the set of colors {b1, b2, b3} and c1, c2, and c3
are the three C-colored m-multi-patterns

c1 := (b1, [p]m, b
m
2 ) , c2 := (b2, [p]m, b

m
2 ) , (80a)

c3 := (b2, [d]m, b3) (80b)

The harmonizator bud generating system of p and d
generates an harmonized version of the pattern p compo-
sed with itself, with chords controlled by d. The colors,
and in particular the color b3, prevent multiple composi-
tions of the colored pattern c3.

For instance, by considering the degree pattern d :=
057̄ and the pattern p := 2102�1�0�, the partial random
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generation algorithm run with the bud generating system
Bharp,d and k := 3 as inputs produces the 3-multi-pattern[

2 1 0 2� 1� 0�
2 6 5 2� 1� 0�
2 6̄ 7̄ 2� 1� 0�

]
(81)

Together with the interpretation consisting in a tempo of
128 and the rooted scale (λ, 93) where λ is the minor na-
tural scale, the generated musical phrase is

= 128

8
8

8
8

8
8

5.4. Random arpeggiations

From a given pattern p and a degree pattern d of arity
m > 1, we define the arpeggiator bud generating system
Barpp,d of p and d by

Barpp,d := (Pm,C, {c1, c2, c3} , b1) (82)

where C is the set of colors {b1, b2, b3} and c1, c2, and c3
are the three C-colored m-multipatterns

c1 := (b1, [p]m, b
m
2 ) , c2 := (b2, [p]m, b

m
2 ) , (83a)

c3 :=

b2,


d1 � � . . . �
� d2 � . . . �
...

...
...

...
...

� � . . . � dm

 , b3
 (83b)

The arpeggiator bud generating system of p and d gene-
rates an arpeggiated version of the pattern p composed
with itself, where the arpeggio is controlled by d. The co-
lors, and in particular the color b3, prevent multiple com-
positions of the colored pattern c3. Observe in particular
that when d = 0m, each composition involving c3 creates
a repetition of a same beat over the m stacked voices.

For instance, by considering the pattern p := 0�213�1
and the degree pattern d := 024, the partial random gene-
ration algorithm run with the bud generating system Barpp,d

and k := 8 as inputs produces the 3-multi-pattern[
0� 2 1 �� 3� 1� 2� 4 3 5� 3 �� 1 �� 3� 1
0� 2� 3 � 3� 1� 2� 4 3 5�� 5 �� 3 � 3� 1
0� 2�� 5 3� 1� 2� 4 3 5��� 7 �� 5 3� 1

]
(84)

Together with the interpretation consisting in a tempo of
128 and the rooted scale (λ, 03) where λ is the major na-
tural scale, the generated musical phrase is

= 128

8
8

8
8

8
8
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