
TRAJECTORY SCORE LIBRARY: A TOOL FOR ALGORITHMIC
SPATIALISATION WITH ANTESCOFO

Nadir Babouri
Spectacle Vivant & Art Sonore
info@nadirbabouri.fr

ABSTRACT

This paper presents Trajectory Score Library, an
Antescofo library of scripts, converting mathematical
parametric functions into curves in order to control the
Spat5 sources trajectories. These scripts are written in
the Antescofo language, a timed synchronous language
which allows the use of relative time to synchronize the
trajectories with musical events. This language can also
provide a convenient way of creating and transmitting
automation parameters to the Spat5 through the Open
Sound Control protocol implemented in Ascrentescofo.
Trajectory Score Library is an additional tool amongst
existing spatialization solutions. In the context of this
presentation these solutions are considered as remote-
control software. Trajectory Score Library thus aims to
use Max as a unified real-time environment to unite
different computer music processes.

1. INTRODUCTION

Antescofo [8] combines a real-time listening machine
with a reactive and timed synchronous language [9]. The
language is used for the authoring of music pieces
involving live musicians and computer processes. The
real-time system assures its correct performance and
synchronization. In our case, the computer process is a
refined control of sound source trajectories in the Ircam
Spatialisateur, a part of the spatial audio rendering 1.
Spatialization, as part of the writing of a piece of music,
is designed to create for the listener a given « spatial
impression »; a generic term that actually brings
together several notions grouped into two families:
— Position and spatial quality of the sound sources:

absolute or relative orientation of the listener,
distance from the listener, width and apparent
depth/location accuracy, etc.

— Perception of the sound space: feeling of
envelopment, perception of the dimensions of the
sound space, reverberation, etc.

All of these perceptual aspects of spatial sound are
strongly linked to geometric parameters, like the
physical position of the sources or the geometry of the
room, and to physical parameters, like the acoustic

1 Other parts of spatial rendering could be the creation of virtual
acoustic spaces, auditory scenes, interactive content, 3D mixing and
diffusion.

properties of the walls of the sound stage, real (concert
situation) or virtual (created by studio mixing) [2].

2. FOUNDATIONS

Trajectory Score Library 2 is a tool conceived in the
context of composing for spatial audio involving dense
streams of various control data, among other electronic
processes within a score. Until now the control of sound
source trajectories was handled through remote applica-
tions, so the aim of this library is to gather the different
electronic processes into the Max real-time environment
[13], augmented with a time structure provided by the
reactive and timed synchronous language in Antescofo.

An Antescofo score is a text file that is used for real-
time score following 3 and triggering electronic actions
as written during composition. It is common in contem-
porary instrumental writing for composers to include
bits of code for the electronic part in their compositional
process. Considering spatialization, the author
previously relied on remote applications with GUI
interfaces, allowing the drawing of trajectories or
including some script to generate trajectories. Aside
from this, extra programming was needed within Max,
the main real-time environment, in order to
communicate with the remote application, trigger the
trajectories, collect the stream automated data, scale it in
some cases and synchronize it with musical events
which required accessing the transport and timeline of
the remote application. Additionally, going back and
forth between environments can be quite time
consuming. Fortunately, most of these applications were
implemented with the OSC 4 protocol which enhanced
the interaction between them. These considerations do
not mean that the remote applications are not efficient.
Each one of them is useful according to a technical or
artistic process i.e. whether we are writing, rehearsing,
playing or recording music.

2 See forum.ircam.fr/projects/detail/trajectory-score
-library.

3 Detecting the position and tempo of live musicians in a given
score

4 See cnmat.berkeley.edu/OpenSoundControl/.

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

3. SPAT5 SPATIALISATION CONTROL:
A STATE OF THE ART

Spat5 5 [7] is a library of multiple software modules
and algorithms that users can combine in order to realize
the spatial audio treatment they need. Spat5 tends to be
completely flexible and addresses any type of audio
setup environment from stereo to complex and
ambitious ones 6. As a real-time spatial audio processor,
Spat5 allows composers, sound artists, performers, and
sound engineers to control the localization of sound
sources in 3D auditory spaces.

Figure 1 shows a Spat5 external called Spat5.pan~ and
its help patcher included in the Max Spat5 Overview.

Spat5 provides a powerful reverberation engine that
can be applied to real and virtual auditory spaces. The
processor receives sounds from instrumental or
synthetic sources, adds spatialization effects in real-time
and outputs signals for reproduction on an electro-
acoustic system (loudspeakers or headphones). Spat5
provides rich and multifold interfaces for monitoring
real-time spatialization in Max. The Spat5 environment
does not provide a time-based interface or transport for
composing spatialization. Fortunately, the OSC protocol
is fully embedded, and communication with remote
applications is robust and convenient due to the url-like
syntax. Some of these applications are considered, in
this paper, as host environments.

Figure 2. Spat5 viewer for sources and speaker visuali-
zation and manipulation

Authoring tools for spatial audio are influenced by
the orientation of these host environments or of the
technological frameworks they fit in, be it from

5 The focus of this article is on the Ircam Spatialisateur.
Nevertheless, the Trajectory Score Library is generic and produces
coordinates that can control other spatialization engines.

6 Ambisonics, wavefield field synthesis.

computational, representational or user interaction
points of view. In the following subsection, we present
some applications used in different contexts.

3.1. Max

Here is an approach to control the trajectories of
audio sources within Max, using an implementation of
an lcd, a buffer, a waveform and function objects 7 .
Drawing a trajectory in the lcd object will generate, via
a program, a script with the convenient Spat5 prepended
syntax. It can be triggered or saved to control the
trajectory of sound sources. This configuration is quite
useful during composition or rehearsals. The lack of a
timeline makes it difficult to be precise in the drawing
of a trajectory, besides the time format is absolute. The
waveform display is useful in order to correlate a
spatialization with the amplitude variation of the sound
source.

Figure 3 shows a Max patch used to generate spat5
trajectories. 1–An lcd object, 2–Spat5 Viewer, 3–Spat5
coordinates, 4–An audio source waveform.

3.2. Holo-Edit

Holo-Edit is a graphical and algorithmic editor of
sound trajectories [1]. It is possible, within the
application, to draw and record position in real time
from an external program or device via the OSC
protocol, and to graphically edit trajectories across a
complex sound system. Holo-Edit allows for precise
positioning of sound sources in time and space defined
by a set of speakers. In order to do so, it associates
sound sources to trajectories, a set of points defined by
their position in space and their time stamp. The
application also offers different ways to create,
transform, and manipulate sound trajectory.

These actions can be launched from both sides. More
calculations are needed to achieve synchronization with
musical events, and Holo-Edit's timeline is in absolute
time.

7 Max native objects.

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

Figure 4. Spat5 interaction with Holo-Edit through
Max. 1–Holo-Edit's Room, 2–OSC interface, 3–Spat5
Viewer, 4–Holo-Edit's Transport.

The automated parameters can also be read off-line
from a Holo-Edit exported XML 8 file, through a Max
program implementing the use of RegExp 9 formatting
and parsing data in order to fit the Spat5 syntax.

3.3. Iannix

IanniX [12] can be used as a tool for the creation and
the performance of musical scores with a graphic
representation. Through various communication proto-
cols, it synchronizes single events as well as continuous
data to external environments. Many object attributes, as
well as various mapping modes, allow the user to match
the characteristics and the behavior of cursors, curves,
and triggers to sound and music parameters and several
MIDI messages. Specific usages of IanniX include the
control of sound spatialization, both for the definition of
virtual sound trajectories and the routing of audio
signals in complex sound projection systems.

Figure 5. Spat5 interaction with Iannix. 1–Iannix score
editor, 2–Spat5 Viewer, 3–OSC messages, 4–Iannix
transport, 5–Iannix Max object.

A set of Max patches is provided by Iannix
developers to link Iannix to the Spat5 engine via OSC.
The remote application transport can also be triggered
from both sides. More calculations are needed to

8 XML stands for eXtensible Markup Language and is designed to
be self-descriptive.

9 RegExp, short for regular expression.

achieve synchronization with musical events and
Iannix’s timeline is in absolute time.

3.4. OpenMusic

OM-Spat is a library for the creation and rendering of
spatial scenes in the computer-aided composition
software, OpenMusic [3]. This library implements
different objects that allow the generation and storage of
source trajectories and spatial attributes. The rendering
is done off-line by the Spat kernel 10 as a binaural or
transaural audio file. A sampling of the trajectories can
also be exported as sequences of data frames in SDIF
format 11. This file can be played and streamed to Spat
by the Spat-SDIF-Player [4], a stand-alone Max
application. The articulation with time consists of a list
of durations, in milliseconds, on which sound
trajectories are mapped.

Figure 6. OM-Spat environment. 1–Spat5 Viewer, 2–
OM trajectories generation, 3–Spat Renderer, 4–Spat-
SDIF-Player, 5–UDP communication.

3.5. SPAT-SCENE

SPAT-SCENE was built upon observation of some
composers' practice at Ircam [10]. Its aim is to help
them structure real-time spatialization processing as part
of a compositional approach. It is a graphical user
interface coupled to a spatial sound processor embedded
in OM-sharp, an application derived from OpenMusic
[5]. It combines the interface and the rendering engine
of the Ircam Spatialisateur with compositional and
temporal control of spatial scene descriptors, all in a
unified framework. The interface provides orthogonal
views of the space vs. time dimensions of spatial sound
scenes: it allows layouts of sound sources to be
specified at specific point, and the timed trajectories, for
individual sound sources, to be edited and synchronized.

10 Spat renderer is an external executable included in the Ircam
Spat5 distribution.

11 Sound Data Interchange Format.

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

The SPAT-SCENE object can be rendered in different
ways. In the context of compositional vs. real-time
interactions, it can act as a controller or monitoring
interface for the real-time spatialization processes.

Figure 7. SPAT-SCENE interface in the OM-sharp
environment. 1–OM trajectories generation, 2–Speaker
settings, 3–SPAT-SCENE transport and timeline BPF,
4–Spat-SCENE, 5–Spat Render.

3.6. OSCar

OSCar [6] is a plugin that uses the OSC protocol to
transmit automation parameters between a digital audio
workstation and a remote application. The main use case
is the production of massively multichannel object-
oriented spatialized mixes. The developer proposes a
workflow where the spatialization rendering engine 12
lies outside the workstation. OSCar plugin is completely
generic and it can control any type of parameters. It can
be inserted on an audio track and during playback,
active automation tracks and their parameters are read
and the corresponding OSC messages are sent over
UDP.

Figure 8. OSCar interface communication between
Reaper and Spat5. 1–The Ircam Spatialisateur viewer;
2–Spatial coordinates automation lanes; 3–OSC
interface, 4–Spat5 Viewer max object connected to a
UDP receiver.

12 OSCar is not tied to a specific spatialization renderer and the
exposed automations are generic.

This method affords the fast and intuitive workflow
for geometrical editing in the automation lanes and a
precise reference to the workstation timeline in absolute
or relative time.

3.7. Symbolist

Symbolist is a graphic notation environment for
music and multimedia [11]. It is based on an OSC
encoding of symbols representing multirate and
multidimensional control data, which can be streamed as
control messages to audio processing or any kind of
media environment. Symbols can be designed and
composed graphically. The environment provides tools
for creating symbols groups and stave references, by
which symbols may be timed and used to constitute a
structured and executable multimedia score.

Figure 9. Symbolist graphic interface and source
trajectory and some audio synthesis. 1–A notation
example to control a source trajectory in spat5, 2–OSC
messages, 3–Spat5 Viewer.

4. COMPOSING WITHIN A UNIQUE
ENVIRONMENT

The implementation of the trajectory algorithms
through Antescofo brings the control of audio spati-
alization to a unified framework for the composition of
mixed music. See Figure 10.

Figure 10. Trajectory Score Library demonstration: 1–
Antescofo max object, 2–An electronic score and a
defined trajectory algorithmic process, 3–The Ircam

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

Spatialisateur viewer, 4–An LCD interface showing a
source trajectory generated by the algorithm.

Indeed, the Antescofo engine and its reactive timed
synchronous language enable fluid process for compos-
ing several layers of refined synthesis and control over
the electronic part of a composition. The language can
be used to do sequencing over messages to be sent to
Max, using musical values expressed in beats, and
relative to the initially declared score tempo.

4.1. Antescofo Language Scripts

Antescofo uses scores 13 to control different computer
processes in mixed music. These scores are simple text
files 14 or scripts, used for real-time score following as
well as the computation and triggering of electronic and
musical events as conceived during composition.
Trajectory Score Library is a collection of scripts,
written in the Antescofo language that includes several
methods, actions, functions, definitions, and processes
used to program the algorithmic control of
spatialization. One of these definitions is called
@fun_def 15 where an intentional function f is defined
by arbitrary rules (i.e. by an expression) that specify
how an image f(x) is associated to an element x. Its
simple formula is:

@fun_def @name($arg1, $arg2, ...){expression}

One of the spatial algorithms, included in the library,
defines a circle trajectory, and the user has access to its
parameters inputs to control the source movement
spatially and temporally.

The cartesian equation of a circle:

 (1)

In order to implement the circle mathematical equation,
it has to be transformed into a parametric equation,

cos 	 , sin (2)

∗ cos , ∗ sin	 (3)

then declared within an Antescofo language script ready
to be used as an expression:

@fun_def X($t, $r, $offsetX){$r *@cos($t)+$offsetX}
@fun_def Y($t, $r, $offsetY){$r *@sin($t)+$offsetY}

13 See support.ircam.fr/docs/Antescofo/manuals/UserGui
de/structure/#structure-of-an-antescofo-score

14 That can be edited using a syntax highlighting for an editor like
Atom. Developed by Nadir Babouri., Clément Poncelet and Benjamin
Levy. See atom.io/packages/atom-antescofo.

15 See support.ircam.fr/docs/Antescofo/manuals/Reference/
functions_def/.

Where t ∈ [0, 2π] and offsetX and offsetY are the
coordinates of the center of the circle.

Any call to @X() and @Y(), anywhere in the action
language, where an expression is allowed (inside
messages, etc.), will be replaced by its value at run-time.
We will use an action language called Curve 16 to apply
these definitions and generate x and y values at run-
time.

Curve receiver 17, starting_point, final_point,
duration

Curves in Antescofo allow for the definition of
continuously sampled actions on break points and
detailed control of the interpolation between them. As
time passes, the curve is traversed, and the
corresponding action fired at the sampling point.

Then we create a process to consolidate the control of
the action of the curve with all the necessary parameters
and make it possible to call the process through an
inserted script including the math.

@global $speed, $pi
$pi := 3.141592653589793
@fun_def X($t, $r, $offsetX){$r*@cos($t)+ $offsetX}
@fun_def Y($t,$r,$offsetY){r*@sin($t) + $offsetY}
@proc_def circle($cmd, $iniT, $targeT, $r, $offsetX,
$offsetY, $count, $speed){ curve circleCurve
@grain:=0.01 @Action := { @command($cmd)
@X($t,$r,$offsetX) @Y($t,$r,$offsetY)}
{$t
{($initT*$pi)}
$speed{($targetT*$pi)}}}

We finally call the process from the score with a
simple command line. In the case of the circle script the
parameters are:

::circle($cmd,$iniT,$targeT,$r,$offsetX,$offsetY,$cou
nt,$speed)

$cmd : The sound source.
$iniT: Source initial position.
$targeT: Source target position.
$r : The circle's radius.
$offsetX : Circle position according to xx' axe.
$offsetY: Circle position according to yy' axe.
$count : N circle loop.
$speed : The duration of the trajectory.

16 See support.ircam.fr/docs/Antescofo/manuals/
Reference/4-compound/#compound-actions.

17 It can be a Max receiver, Supercollider, or any other computer
music environment.

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

Figure 11. A circle trajectory process

The outcome of the computation will be forwarded to
the Spat engine through OSC and prepended with the
Spat5 syntax: /source/1/xy $1 $2. With the
process: ::circle("spat1", 0, 2, 1, 0, 0, 1, 4)
the source spat1" will make one turn counter-clockwise
with a radius of 1 during 4 beats. The ready-made
trajectories in the Trajectory Score Library can be easily
transformed through the inputs to the algorithm 18. In the
example of the circle trajectory process, if we would
like to change the radius and the position of the circle,
we need to change the $r and the $offset parameters:

::circle("spat1", 0, -2, 1, 0, 0, 1, 4)
::circle("spat2”, 0, -2, 0.5, -2, 2, 1, 4)
::circle("spat3", 7/4, 2+7/4, 1, 1., 1., 1, 4)
::circle("spat4”, 0, -2, 3, 0, 0, 1, 4)

Figure 12 shows the produced trajectories in the Spat
Viewer.

We can at the same time control, for example, the
aperture and the yaw of all the sound sources 19 using

18 See support.ircam.fr/docs/Antescofo/manuals/Reference/
10-process/.

19 The aperture is a ratio between direct and reverberated sound. In-
creasing the Aperture will ultimately diffuse it wider, excite more the
room and then increase the reverb sensation. The orientation of the
source is controlled by Yaw. It is the ability to turn the direction of the
source 360 degrees.

another Antescofo construction called Group 20 in the
score 21:

Group position-orientation-diffusion {
oscsend src_aperture “localhost” :
4072“/source/*/aperture” source_aperture 10
oscsend src_yaw "localhost" : 4072 "/source/*/yaw”
src_yaw 180}

4.2. Time and Score Performance

Speaking about time is very easy in Antescofo 22 [9]. An
Antescofo score can be seen as a sequencer, where all
the actions are organized in time that we specify in a
text file. We can write an electronic score with the beat
notation and decide later to change the tempo. In this
case we don't have to rewrite all the durations.
Antescofo does the translation. This allows us to change
the tempo with the BPM declaration at any place in a
score. We can also work within different times
simultaneously using the @tempo attribute in order to
write complex polyrhythms. We can accordingly control
trajectories sequentially and synchronize them precisely
to electronic and musical events. When the time unit is
declared, through the BPM assignment, all the delays
between the actions and the durations of the processes
become relative to that BPM whether it is fixed or
depending on the tempo of the musician and its
computation by the listening machine.

BPM 60
@insert“inserts/@rectilinear.asco.txt”
@insert “inserts/@lissajou.asco.txt”
Event 1 spat1_mvt_01
::rectilinear("spat1", 0, 2, -2, 2, 2, 0, 1, 1)
1
::rectilinear("spat1”, 0, 2, 2, 2, 0, -2, 1, 1)
1
::rectilinear("spat1”, 0, 2, 2, -2, -2, 0, 1, 1)
1
::rectilinear("spat1”, 0, 2, -2, -2, 0, 2, 1, 1)
4
::lissajou("spat1”, 1/3, 3, 2, -2, 4, 3, 1, 16)

In the example above, once the event is detected or
launched by the musician, the audio source "spat1” will
first achieve four-line trajectories of a duration of 1 beat.
Each will be triggered one after the other with a delay of
one beat. A square trajectory is thus programmed. Four
beats later, a Lissajous trajectory with a duration of 16
beats is launched moving the sound source in the
loudspeaker projection setup. We can accordingly syn-
chronize different processes relative to the declared
BPM and to the notation score played by a musician or
to a running electroacoustic piece. When events are

20 The group construction gathers several actions logically within
one block that shares common properties of tempo, synchronization
and errors handling strategies in order to create polyphonic phrases.

21 We can also construct a process to control the change of the aper-
ture and the yaw smoothly with a curve action.

22 Voir support.ircam.fr/docs/Antescofo/manuals/Reference/
5-synchro/.

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

detected by the listening machine in real time, and while
the tempo of the musician is fluctuating, there exists
some synchronization strategies that defines the
temporal evolution of a process depending on the
musician, to help the composer achieve the precision or
evolution of sound he needs in the performance.

Figure 13 shows the produced trajectories of the
spat1_mvt_01 Antescofo event.

5. CONCLUSION AND PERSPECTIVES

The author first presented a non-exhaustive set of
external software utilities used to create and control
audio sources trajectories in the Ircam Spatialisateur.
Going back and forth between some of these host
environments and Max can be time consuming. And
extra programming is needed to trigger the trajectories,
collect the stream automated data, scale it to our needs
in some cases, and synchronize it with our musical
events. To improve these operations, the author
presented a first prototype of Trajectory Score Library. A
set of scripts developed for editing and executing
control data streams for audio spatialization. The aim of
the library is to embed the compositional process, with
the digital signal processing into a unified interactive
system. The author would like to carry the development
of this library due to the evolution of the Antescofo
language and the Spat5 library. The notion of “object”,
widespread in language programming, can now be
implemented, in order to organize code by gathering
values together into a state, and making the possible
interactions with this state explicit through the notion of
methods 23 . This will help constructing varying and
continuous complex trajectories. We can also write,
from now on, the trajectory processes with the default
parameters which will make the code more readable.
Indeed, a process was declared this way:

::circle("spat1", 0, 2, 1, 0, 0, 1, 4)

23 Voir support.ircam.fr/docs/Antescofo/manuals/
Reference/actors/#introduction-process-as-object

Instead, the name of explicit parameters will be
added, which will facilitate the reading and probing of
the code:

::circle(/source, spat1, /iniT, 0, /targeT, 2,
/radius, 1, /offsetX, 0, /offsetY, 0, /count, 1,
/speed, 4)

Finally, extra inputs may be added to the algorithms
to react to an external environment, such as gesture
following.

6. ACKNOWLEDGEMENTS

The author would like to strongly acknowledge the
kind support of Thibaut Carpentier, José-Miguel
Fernandez, Jean-Louis Giavitto, Benjamin Levy and
Clément Poncelet.

7. REFERENCES

[1] Bascou, C. « Adaptive Spatialization and Scripting
Capabilities in the Spatial Trajectory Editor Holo-
Edit », Proceedings of the 7th Sound and Music
Computing Conference, Barcelona, 2010.

[2] Baskind, A. « Quelques notions sur la
spatialisation », Ircam - Centre Pompidou,
Formation Spatialisateur, Paris, 2008.

[3] Bresson, J., Schumacher, M. « Representation and
Interchange of Sound Spatialization Data for
Compositional Applications », Proceedings Interna-
tional Computer Music Conference, Huddersfield,
UK, 2011.

[4] Bresson, J. « Spatial Structures Programming for
Music », Spatial Computing Workshops (SCW),
Valencia, Spain, 2012.

[5] Bresson, J., Bouche D., Carpentier T., Schwarz D.,
et Garcia J. « Next-generation Computer-aided
Composition Environment: A New Implementation
of OpenMusic », Proceedings of the International
Computer Music Conference (ICMC), Shanghai,
China, 2017.

[6] Carpentier, T. « ToscA: An OSC Communication
Plugin for Object-Oriented Spatialization Author-
ing », Proceedings of the 41st International
Computer Music Conference, Denton, USA, 2015,
p. 368-371.

[7] Carpentier, T. « A new implementation of Spat in
Max. », Proceedings of the 15th Sound and Music
Computing Conference (SMC), Limassol, Cyprus,
2018, p. 184-191.

[8] Cont, A. « ANTESCOFO: Anticipatory Synchroni-
zation and Control of Interactive Parameters in
Computer Music », International Music Conference
(ICMC), Belfast, Ireland, 2008, p. 33-40. [Hal-
00694803.]

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

[9] Echeveste, J., Giavito J.-L., Cont, A. A Dynamic
Timed-Language for Computer-Human Musical
Interaction. [Research Report] RR-8422, INRIA,
2013.

[10] Garcia, J., Carpentier T., Bresson J. « Interactive-
compositional authoring of sound spatialization »,
Journal of New Music Research 46/1 (2017), p. 74-
86.

[11] Gottfried, R., Bresson, J. « Symbolist: An Open
Authoring Environment for End-user Symbolic
Notation », International Conference on Technolo-
gies for Music Notation and Representation
(TENOR'18), Montreal, Canada, 2018.

[12] Jacquemin, G., Coduys T., Ranc M. « Iannix 0.8 »,
Actes des Journées d'Informatique Musicale, Mons,
Belgique, 2012.

[13] Puckette, M. « Combining Event and Signal
Processing in the MAX Graphical Programming
Environment », Computer Music Journal 15/3
(1991).

Texte édité par Tom Mays

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire

